Interactive Visual Analysis of Scientific Data

Helwig Hauser (Univ. of Bergen), 2013-11-06, Paris

Interactive Visual Analysis

- Given data – *too much* and/or *too complex* to be shown all at once:

- IVA is an *interactive visualization methodology* to facilitate
 - the *exploration* and/or *analysis* of data (not necessarily the presentation of data), including
 - *hypothesis generation* & evaluation, sense making,
 - *knowledge crystallization*, *etc.*
 - according to the *user’s interest/task*, *for ex.*, by interactive feature extraction,
 - navigating between *overview* and *details*, *e.g.*, to enable interactive information drill-down [Shneiderman]

- through an *iterative & interactive visual dialog*
Interactive Visual Analysis ↔ Visual Analytics

- **IVA** (interactive visual analysis) **since 2000**
- **Tightly related** to visual analytics, of course, e.g., integrating computational & interactive data analysis
- **Particular methodology** with specific components (CMV, linking & brushing, F+C vis., etc.)
- General enough to work in many application fields, but not primarily the VA fields (national security, etc.), in particular “scientific data” fields…

Integrating Interaction & Computation

- **Goal**: to combine the best of two worlds [Keim et al.]:
 - data exploration/analysis by the user, based on interactive visualization
 - and data analysis by the computer, based on statistics, machine learning, etc.
- **State of the art / levels of integration**:
 - mostly no integration, still
 - some vis. of results of computations
 - also: making comp. semi-interactive (here called “inner integration”)
 - rare: tight integration
- **Outer integration** (here!): bundling interaction & computation in a loop

[902] Yang et al. (2016)
Target Data Model: “Scientific Data”

- **Characterized** by a combination of
 - independent variables, like space and/or time (cf. domain)
 - and dependent variables, like pressure, temp., etc. (cf. range)

- So we can think of this type of data as given as \(d(x) \) with \(x \leftrightarrow \text{domain} \) and \(d \leftrightarrow \text{range} \) – examples:
 - CT data \(d(x) \) with \(x \in \mathbb{R}^3 \) and \(d \in \mathbb{R} \)
 - unsteady 2D flow \(v(x,t) \) with \(x \in \mathbb{R}^2 \), \(t \in \mathbb{R} \), and \(v \in \mathbb{R}^2 \)
 - num. sim. result \(d(x,t) \) with \(x \in \mathbb{R}^3 \), \(t \in \mathbb{R} \), and \(d \in \mathbb{R}^n \)
 - system sim. \(q(p) \) with \(p \in \mathbb{R}^n \) and \(q \in \mathbb{R}^m \)

- **Common property:**
 - \(d \) is (at least to a certain degree) continuous wrt. \(x \)

Interactive Visual Analysis of Scientific Data

- **Interactive visual analysis** (as exemplified in this tutorial) works really well with scientific data, e.g.,
 - results from **numerical simulation** (spatiotemporal)
 - imaging / **measurements** (in particular multivariate)
 - sampled **models**

- When used to study scientific data, **IVA employs**
 - methods from **scientific visualization** (vol. rend., …)
 - methods from **statistical graphics** (scatterplots, …), **information visualization** (parallel coords., etc.)
 - **computational tools** (statistics, machine learning, …)

- **Applications include**
 - engineering, medicine, meteorology/climatology, biology, etc.
The Iterative Process of IVA

- Loop / bundling of two complementary parts:
 - **visualization** – show to the user!
 Something new, or something due to interaction.
 - **interaction** – tell the computer!
 What is interesting? What to show next?

- Basic example (**show** – **brush** – show – …), cooling jacket context:
 1. show a histogram of temperatures
 2. brush high temperatures (>90°±2°)
 3. show focus+context vis. in 3D
 4. locate relevant feature(s)

- **KISS-principle IVA:**
 - linking & brushing, focus+context visualization, …
Show & Brush

Tightest IVA loop
- **show data** (explicitly represented information)
- **one brush** (on one view, can work on >1 dims.)

Requires:
- multiple views (≥2)
- interactive brushing capabilities on views (brushes should be editable)
- focus+context visualization
- linking between views

Allows for **different IVA patterns** (wrt. domain & range)

A typical (start into an) IVA session of this kind:
- bring up multiple views
 - at least one for x, t
 - at least one for d_i
- I see (something)!
- brush this “something”
- linked F+C visualization
- first insight!

... leads to...
... requires...
... is realized via ...

Degree of interest
IVA: Multiple Views

- One dataset, but multiple views
- Scatterplots, histogram, 3D(4D) view, etc.

Interactive Brushing

- Move/alter/extend brush interactively
- Interactively explore/analyze multiple variates

[Doleisch et al., '03]
Interactive Brushing

- Move/alter/extend brush interactively
- Interactively explore/analyze multiple variates

[Doleisch et al., '03]
IVA: Focus+Context Visualization

- Traditionally space distortion
 - more space for data of interest
 - rest as context for orientation
- Generalized F+C visualization
 - emphasize data in focus (color, opacity, …)
 - differentiated use of visualization resources

F+C Visualization in IVA Views

- Colored vs. gray-scale visualization
- Opaque vs. semi-transparent visualization

In a scatterplot (left) or histogram (right): brushed data in red…
F+C Visualization in IVA Views

Colored vs. gray-scale visualization
Opaque vs. semi-transparent visualization

In a scatterplot (left) or histogram (right): brushed data in red...
In parallel coordinates (above): brushed data in red & over...
In 3D (above): less transp. & colored, in illustrative context...
IVA: Linked Views

- Brushing: mark data subset as especially interesting
- Linking: enhance brushed data in linked views consistently (F+C)

[Doleisch & Hauser, ’02]
IVA: Degree of Interest (DOI)

- $\text{doi}(.)$: data items tr_i (table rows) \rightarrow degree of interest
 - $\text{doi}(tr_i) \in [0,1]$
 - $\text{doi}(tr_i) = 0 \Rightarrow tr_i$ not interesting ($tr_i \in \text{context}$)
 - $\text{doi}(tr_i) = 1 \Rightarrow tr_i$ 100% interesting ($tr_i \in \text{focus}$)

- Specification
 - explicit, e.g., through direct selection
 - implicit, e.g., through a range slider

- Fractional DOI values: $0 \leq \text{doi}(tr_i) \leq 1$
 - several levels (0, low, med., …)
 - a continuous measure of interest
 - a probabilistic definition of interest

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>$d1$</th>
<th>$d2$</th>
<th>doi</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>17.20</td>
<td>0.22</td>
<td>0.00</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>12.19</td>
<td>0.19</td>
<td>0.00</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>7.70</td>
<td>0.45</td>
<td>0.00</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>2.10</td>
<td>0.90</td>
<td>0.00</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>24.10</td>
<td>0.02</td>
<td>0.00</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>21.90</td>
<td>0.36</td>
<td>0.00</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>15.50</td>
<td>0.87</td>
<td>0.74</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>11.10</td>
<td>1.20</td>
<td>1.00</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>27.20</td>
<td>0.12</td>
<td>0.00</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>24.10</td>
<td>0.66</td>
<td>0.10</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>17.30</td>
<td>1.36</td>
<td>1.00</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>12.10</td>
<td>2.20</td>
<td>0.50</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>35.50</td>
<td>0.67</td>
<td>0.00</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>30.90</td>
<td>1.30</td>
<td>0.00</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>24.50</td>
<td>2.10</td>
<td>0.10</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>20.80</td>
<td>2.90</td>
<td>0.00</td>
</tr>
</tbody>
</table>

IVA: Smooth Brushing \rightarrow Fractional DOI

- Fractional DOI values esp. useful wrt. scientific data: (quasi-)continuous nature of data \leftrightarrow smooth borders

- Goes well with gradual focus+context vis. techniques (coloring, semitransparency)

- Specification: smooth brushing
 - “inner” range: all 100% interesting (DOI values of 1)
 - between “inner” & “outer” range: fractional DOI values
 - outside “outer” range: not interesting (DOI values of 0)
Requires fuzzy logic for combination, we use $c = \min(a, b)$

$c = \max(a, b)$

$c = 1$

Matches the smooth nature of the data

Goes well with F+C visualization, e.g., opacity varies gradually with DOI

[Doleisch & Hauser 2002]
Three Patterns of SciData IVA

Preliminary: domain x & range d visualized (≥ 2 views)

1. **brushing on domain visualization**, e.g., brushing special locations in the map view

 - "local investigation"
 - "... from x to d...

2. **brushing on range visualization**, e.g., brushing outlier curves in a function graph view

 - "feature localization"
 - "... from d to x...

3. relating multiple range variates

 - "multi-variate analysis"
 - "... within d...

IVA – Levels of Complexity

(1/4)

A **lot** can be done with basic IVA, already! [pareto rule]

We can consider a **layered information space**: from **explicitly** represented information (the data) to **implicitly** contained information, **features**, ...

show & brush

data

between the lines...

buried deeper...

features in application terms

... vort.
IVA – Levels of Complexity (2/4)

- A **lot** can be done with basic IVA, already! [pareto rule]
- For more **advanced** exploration/analysis **tasks**, we extend it (in several steps):
 - IVA, level 2: **logical combinations of brushes**, *e.g.*, utilizing the **feature definition language** [Doleisch et al., 2003]
 - IVA, l. 3: **attribute derivation**; **advanced brushing**, with interactive formula editor; *e.g.*, similarity brushing
 - IVA, l4: **application-specific feature extraction**, *e.g.*, based on vortex extraction methods for flow analysis
- Level 2: like **advanced verbal feature description**
 - ex.: “**hot** flow, also **slow**, near **boundary**” (cooling j.)
 - brushes comb. with **logical operators** (AND, OR, SUB)
 - in a **tree**, or iteratively \(((b_0 \text{ op}_1 b_1) \text{ op}_2 b_2) \text{ op}_3 b_3) \ldots\)

IVA – Levels of Complexity (2/4)

- A **lot** can be done with basic IVA, already! [pareto rule]
- For more **advanced** exploration/analysis **tasks**, we extend it (in several steps):
 - IVA, level 2: **logical combinations of brushes**, *e.g.*, utilizing the **feature definition language** [Doleisch et al., 2003]
 - IVA, l. 3: **attribute derivation**; **advanced brushing**, with interactive formula editor; *e.g.*, similarity brushing
 - IVA, l4: **application-specific feature extraction**, *e.g.*, based on vortex extraction methods for flow analysis
- Level 2: like **advanced verbal feature description**
 - ex.: “**hot** flow, also **slow**, near **boundary**” (cooling j.)
 - brushes comb. with **logical operators** (AND, OR, SUB)
 - in a **tree**, or iteratively \(((b_0 \text{ op}_1 b_1) \text{ op}_2 b_2) \text{ op}_3 b_3) \ldots\)
IVA – Levels of Complexity

A lot can be done with basic IVA, already! [Pareto rule]

For more advanced exploration/analysis tasks, we extend it (in several steps):

- IVA, level 2: logical combinations of brushes, utilizing the feature definition language [Doleisch et al., 2003]
- IVA, l. 3: attribute derivation; advanced brushing, with interactive formula editor; e.g., similarity brushing
- IVA, l4: application-specific feature extraction, e.g., based on vortex extraction methods for flow analysis

Level 3: using general info extraction mechanisms, two (partially complementary) approaches:

1. derive additional attribute(s), then show & brush
2. use an advanced brush to select “hidden” relations
IVA (level 3): Advanced Brushing

- **Std. brush**: brush 1:1 what you see
- **Adv. brush**: executes additional function ("intelligent")?

Examples:
- angular brushing [Hauser et al., 2002]
- similarity brushing [Muigg et al., 2008]

Examples:

3rd level IVA, adv. brushing example

- Considering a visualization of a family of function graphs:
 - select the steeply rising graphs

Example:

- Fuel injection simulation "injection rate"

Example prepared by Konyha, Zoltan
A simple line brush is not enough

Combining line brushes does not work, either

feature of interest: not explicitly available
The *angular line brush* (a specialized brush) selects the intended function graphs that it intersects, and the angle is in a given threshold.

Example prepared by Konyha, Zoltan
IVA (level 3): Attribute Derivation

- **Principle** (in the context of iterative IVA):
 - see some data feature Φ of interest in a visualization
 - identify a mechanism T to describe Φ
 - execute (interactively!) an attribute derivation step to represent Φ explicitly (as new, synthetic attribute[s] d_Φ)
 - brush d_Φ to get Φ

- **Tools** T to describe Φ from:
 - numerical mathematics
 - statistics, data mining
 - etc.
 - ➢ scientific computing

- **IVA w/ T ↔ visual computing**

Attribute Derivation ↔ User Task / example

- The tools T, available in an IVA system, must reflect/match the **analytical steps of the user**:

- **Example**:
 - **first vis.**: \leftrightarrow user wishes to select the “band” in the middle
 - **so?** an advanced brush? a lasso maybe?
 - **ah!** → let’s normalize y and then brush (a)

- leading to the wished selection:
What user wishes to reflect?

- Many **generic wishes** – users interest in:
 - something **relative** (instead of some absolute values),
 example: show me the *top-15%*
 - **change** (instead of current values),
 ex.: show me regions with *increasing temperature*
 - some **non-local property**,
 ex.: show me regions with *high average temperature*
 - **statistical properties**,
 ex.: show me outliers
 - **ratios/differences**,
 ex.: show me population per area, difference from trend
 - *etc.*

- **Common characteristic** here:
 - questions/tools **generic**, not application-dependent!

How to reflect these user wishes?

- Many **generic wishes** – users interest in:
 - something **relative** (instead of some absolute values),
 example: show me the *top-*
 - **change** (instead of current values),
 ex.: show me regions with *increasing*
 - some **non-local property**,
 ex.: show me regions with *high average temperature*
 - **statistical properties**,
 ex.: show me outliers
 - **ratios/differences**,
 ex.: show me population per area, difference from trend
 - *etc.*

- **Common characteristic** here:
 - questions/tools **generic**, not application-dependent!
Some useful tools for 3^{rd}-level IVA

From analysis, calculus, num. math:

- **linear filtering** (convolve the data with some linear filter on demand, e.g., to smooth, for derivative estimation, etc.)
- **calculus** (use an interactive formula editor for computing simple relations between data attributes; $+, -, \cdot, /, \text{ etc.}$)
- **gradient estimation, numerical integration** (e.g., wrt. space and/or time)
- **fitting/resampling** via interpolation/approximation

From statistics, data mining:

- **descriptive statistics** (compute the statistical moments, also robust, measures of outlyingness, detrending, etc.)
- **embedding** (project into a lower-dim. space, e.g., with PCA for a subset of the attribs., etc.)

Important: executed on demand, after prev. vis.

3^{rd}-level IVA – Sample Iterations

The **Iterative Process of 3^{rd}-level IVA**:

- **Example 1:**
 - you look at some *temp. distribution over some region*
 - you are interested in raising temperatures, *but not temperature fluctuations*
 - you use a *temporal derivate estimator*, for ex.,
 - central differences $t_{\text{change}} = (t_{\text{future}} - t_{\text{past}}) / \text{len(future-past)}$
 - you plot t_{change}, e.g., in a *histogram*
 and *brush* whatever change you are interested in
 - maybe you see some frequency amplification due to derivation, *so you go back* and
 - use an appropriate smoothing filter
 to remove high frequencies from the *temp. data*,
 leading to a derived new $t = t_{\text{smooth}}$ data attribute
 - selecting from a *histogram of* t_{change} (computed like above)
 is then less sensitive to temperature fluctuations
IVA – Levels of Complexity

A lot can be done with basic IVA, already! [pareto rule]

For more advanced exploration/analysis tasks, we extend it (in several steps):

- IVA, level 2: logical combinations of brushes utilizing the feature definition language [Doleisch et al., 2003]
- IVA, l. 3: attribute derivation; advanced brushing, with interactive formula editor; e.g., similarity brushing
- IVA, l. 4: application-specific feature extraction, e.g., based on vortex extraction methods for flow analysis

Level 4: application-specific procedures
- tailored solutions (for a specific problem)
- “deep” information drill-down
- etc.
Interactive Visual Analysis – delivery

- Understanding data **wrt. range** d
 - which distribution has data attribute d_i?
 - how do d_i and d_j relate to each other? *(multivariate analysis)*
 - which d_k discriminate data features?

- Understanding data **wrt. domain** x
 - where are relevant features? *(feature localization)*
 - which values at specific x? *(local analysis)*
 - how are they related to parameters?
The Iterative Process of IVA...

...leads to an interactive & iterative workbench for visual data exploration & analysis (compare to visual computing, again)

- A really important question is: how fast is one such loop?

- Jean-Daniel Fekete, 2012:

| Table 3. Human Time Constants for Tuning Cognitive Co-Processor |
|---------------------------------|--------|----------------|
| **TIME CONSTANT** | **VALUE** | **REFERENCES** |
| Perceptual processing | .1 s | [5] |
| Immediate response | 1 s | [21] |
| Unit task | 10 s | [5,21] |

THE INFORMATION VISUALIZER, AN INFORMATION WORKSPACE

Stuart K. Card, George G. Robertson, Jock D. Mackinlay

Xerox Palo Alto Research Center
Palo Alto, California 94304
(415) 994-4362, Card.PARC@Xerox.COM

CHI ’91

Response Times

- 0.1 sec - animation, visual continuity, sliders
- 1 sec - system response, conversation break
- 10 sec - cognitive response

- Beyond 20 sec, users wait and lose attention
 - Forget their goals and plans
 - Progress bar needed!

Categories of Interaction Pace

- Separate ► unit task ► immediate ► continuous
 - separate: offline processing
 - unit task [Card et al., ’91]: ≈10s – before attention breaks!
 - immediate: ≈1s – maintains an interplay, a conversation
 - continuous: ≈0.1s – smooth in the eye (perception)

The unit task time constant. Finally, we seek to make it possible for the user to complete some elementary task act within 10 sec (say, 5–30 sec) [5,21], about the pacing of a point and click editor. Information agents may require considerable time to complete some complicated request, but the user, in this paradigm, always stays active. He or she can begin the next request as soon as sufficient information has developed from the last or even in parallel with it.

The immediate response time constant. A person can make an unprepared response to some stimulus within about a second [21]. If there is more than a second, then either the listening party makes a backchannel response to indicate that he his listening (e.g., “uh-huh”) or the speaking party makes a response (e.g., “uh...”) to indicate he is still thinking of the next speech. These serve to keep the parties of the interaction informed that they are still engaged in an interaction. In the Cognitive Co-processor, we attempt to have agents provide status feedback at intervals no longer than this constant. Immediate response animations (e.g., swinging the branches of a 3D tree into view) are designed to take about a second. If the time were much shorter, then the user would lose object constancy and would have to reorient himself. If they were much longer, then the user would get bored waiting for the response.

Really important differences on the user side!
The Iterative Process of IVA...

...leads to an interactive & iterative workbench for visual data exploration & analysis (compare to visual computing, again)

Different levels of complexity (show & brush, logical combinations, advanced brushing & attribute derivation, etc.)...

...lead to according iteration frequencies:

- on level 1: smooth interactions, many fps, for example during linking & brushing
- on level 2: interleaved fast steps of brush ops., for example when choosing a logical op. to cont. with
- on level 3: occasionally looking at a progress bar, for example when computing some PCA, etc.

These frequencies limit the spectrum of usable tools

New res. work will help to extend this spectrum!

The Iterative Process of IVA...

...is a very useful methodology for data exploration & analysis

...is very general and can be (has already been) applied to many different application fields (in this talk the focus was on scientific data)

...meets scientific computing as a complementary methodology (with the important difference that in IVA the user with his/her perception/cognition is in the loop at different frequencies, also many fps)

...is not yet fully implemented (we’ve done something, e.g., in the context of SimVis, ComVis, etc.) – from here: different possible paths, incl. InteractiveVisualMatlab, IVR, etc.)
Acknowledgements

■ You!

■ Jean-Daniel Fekete & Marc Baaden!

■ Krešimir Matković, Helmut Doleisch, Raphael Fuchs, Johannes Kehrer, Zoltan Konyha, Çağatay Turkay, et al.!

■ All around SimVis and ComVis and …

■ Funding partners (FFG, AVL, EU, UiB, …)