About **Visualization in Bergen.no** and **Interactive Visual Analysis**

Helwig Hauser
University of Bergen

In the Following

1. Briefly about visualization in Bergen, Norway
2. Interactive Visual Analysis (IVA)
3. High-dimensional Data IVA
HH: prof. in visualization (vis)
@ Dept. of Informatics (ii)
@ Univ. of Bergen (UiB)
in Bergen, Norway (.no)

UiB VisGroup
– 2007: group of 3:
– 2009: larger projects start
– 2011: EuroVis in Bergen
– 2013: new prof:

[ranking from NFR’s 10-year evaluation in 2011/2012]

ii.UiB.no/vis Research

➢ Application-oriented basic research in visualization:

1. Researched visualization methodology (how to visualize)
 ➢ Interactive Visual Analysis, nD data (H. Hauser et al.)
 ➢ Visual Knowledge Discovery, 3D data (St. Bruckner et al.)
 ➢ Illustrative Visualization (I. Viola et al.)

2. Applications at which this research is oriented (for whom)
 ➢ Medical Visualization (partner in MedViz Bergen, etc.)
 ➢ GeoSciences / Oil & Gas (e.g., financed by Statoil’s Akademiaavtale)
 ➢ Biology / Bioinformatics (with CBU@ii et al.)
 ➢ Fluid Dynamics (in collab. with FFI.no, for ex.)
 ➢ Engineering (visual analysis of simulation data)
ii.UiB.no/vis Team

Two profs. (HH, StBr) and PostDocs, PhD studs., *et al.*

<table>
<thead>
<tr>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>HH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Ivan Viola ---
 - Stefan Bruckner
 - Július Parulek ---

- Daniel Patel --
- Jean-Paul Balabanian -------------------------------------
 - Paolo Angelelli --
 - Ove Daae Lampe --
 - Johannes Kehrer --

- Åsmund Birkeland ---
- Armin Pobitzer ---
 - Veronika Šoltészová ---------------------------------

- Endre Lidal ---
- Çağatay Turkay --
 - Andrea Brambilla -------------------------------------
 - Paolo Angelelli --------------------------------------

- Ivan, Andreas --

ii.UiB.no/vis PhDs (10 so far)

- Daniel Patel (Oct. 2009): Expressive Vis. & Rapid Interpr. of Seismic Volumes
- Jean-Paul Balabanian (Jan. 2010): Multi-Aspect Vis.: from Linked to Integrated Views
- Johannes Kehrer (May 2011): IVA of Multi-faceted Scientific Data
- Ove Daae Lampe (Nov. 2011): IVA of Process Data
- Armin Pobitzer (June 2012): IVA of Time-dependent Flows
- Paolo Angelelli (June 2012): Visual Expl. of Human Physiology
- Åsmund Birkeland (May 2013): Ultrasonic Vessel Vis.: From Extraction to Perception
- Endre Lidal (May 2013): Sketch-based Storytelling for Cognitive Problem Solving
- Çağatay Turkay (Nov. 2013): Interactive Visual Analysis of High-dimensional Data
Interactive Visual Analysis (IVA)

- Given data – *too much* and/or *too complex* to be shown at once:
- IVA is an **interactive visualization approach** to facilitate
 - the **exploration** and/or the **analysis** of data (not necessarily the presentation of data), including
 - **hypothesis generation & evaluation**, **sense making**, **knowledge crystallization**, *etc.*
 - according to the user’s interest/task, *for ex.*, by interactive feature extraction,
 - navigating between **overview** and **details**, *e.g.*, to enable interactive information drill-down [Shneiderman]
- through an **iterative & interactive visual dialog**

Interactive Visual Analysis ↔ Visual Analytics

- **IVA** (“interactive visual analysis”) **since 2000**
- **Tightly related** to **visual analytics**, of course, *e.g.*, **integrating computational & interactive data analysis**
- **A particular methodology** with specific components (*CMV*, *linking & brushing*, *F+C vis.*, *etc.*)
- **General enough to work in many application fields**, but not primarily the VA fields (national security, *etc.*), in particular “**scientific data” fields**…
Integrating Interaction & Computation

- **Goal**: to combine the *best of two worlds* [Keim et al.]:
 - data *exploration/analysis* by the user, based on interactive visualization
 - and data *analysis* by the computer, based on statistics, machine learning, etc.

- State of the art / levels of integration:
 - mostly *no integration*, still
 - some *vis. of results* of computations
 - also: making comp. *semi-interactive* (here called “inner integration”)
 - rare: *tight integration*

- **Outer integration** (here!):
 bundling interaction & computation in a loop

Target Data Model: “Scientific Data”

- **Characterized** by a combination of
 - independent variables, like space and/or time (cf. domain)
 - and dependent variables, like pressure, temp., etc. (cf. range)

- So we can think of this type of data as given as \(d(x)\) with \(x \leftrightarrow \text{domain}\) and \(d \leftrightarrow \text{range}\) – examples:
 - CT data \(d(x)\) with \(x \in \mathbb{R}^3\) and \(d \in \mathbb{R}\)
 - unstead 2D flow \(v(x,t)\) with \(x \in \mathbb{R}^2\), \(t \in \mathbb{R}\), and \(v \in \mathbb{R}^2\)
 - num. sim. result \(d(x,t)\) with \(x \in \mathbb{R}^3\), \(t \in \mathbb{R}\), and \(d \in \mathbb{R}^n\)
 - system sim. \(q(p)\) with \(p \in \mathbb{R}^n\) and \(q \in \mathbb{R}^m\)

- **Common property**:
 - \(d\) is (at least to a certain degree) *continuous* wrt. \(x\)
Interactive Visual Analysis of Scientific Data

- **Interactive visual analysis** (as exemplified in this tutorial) works really well with scientific data, e.g.,
 - results from numerical simulation (spatiotemporal)
 - imaging / measurements (in particular multivariate)
 - sampled models

- When used to study scientific data, **IVA employs**
 - methods from scientific visualization (vol. rend., …)
 - methods from statistical graphics (scatterplots, …), information visualization (parallel coords., etc.)
 - computational tools (statistics, machine learning, …)

- Applications include
 - engineering, medicine, meteorology/climatology, biology, etc.

The Iterative Process of IVA

- Loop / bundling of two complementary parts:
 - visualization – show to the user!
 Something new, or something due to interaction.
 - interaction – tell the computer!
 What is interesting? What to show next?

- Basic example (**show – brush – show – …**), cooling jacket context:
 1. show a histogram of temperatures
 2. brush high temperatures (>90°[±2°])
 3. show focus+context vis. in 3D
 4. locate relevant feature(s)

- **KISS-principle IVA:**
 - linking & brushing, focus+context visualization, …
Show & Brush

Tightest IVA loop
- **show data** (explicitly represented information)
- **one brush** (on one view, can work on >1 dims.)

Requires:
- multiple views (≥2)
- interactive brushing capabilities on views (brushes should be editable)
- focus+context visualization
- linking between views

Allows for different IVA patterns (wrt. domain & range)

A typical IVA session of this kind:
- bring up multiple views
 - at least one for x, t
 - at least one for d_i
 - I see (something)!
 - brush this “something”
 - linked F+C visualization
 - first insight!

... leads to...
... requires...
... is realized via...

degree of interest
IVA: Multiple Views

- One dataset, but multiple views
- Scatterplots, histogram, 3D(4D) view, etc.

Interactive Brushing

- Move/alter/extend brush interactively
- Interactively explore/analyze multiple variates
Interactive Brushing

- Move/alter/extend brush interactively
- Interactively explore/analyze multiple variates

[Doleisch et al., '03]
IVA: Focus+Context Visualization

- Traditionally space distortion
 - more space for data of interest
 - rest as context for orientation
- Generalized F+C visualization
 - emphasize data in focus (color, opacity, ...)
 - differentiated use of visualization resources

F+C Visualization in IVA Views

- Colored vs. gray-scale visualization
- Opaque vs. semi-transparent visualization

In a scatterplot (left) or histogram (right): brushed data in red

[Matković et al., '09]
F+C Visualization in IVA Views

[F+ Novotny & Hauzer, ’06]

In parallel coordinates (above): brushed data in red & over

[Muigg et al., ’07]

In 3D (above): less transp. & colored, in illustrative context
IVA: Linked Views

- Brushing: mark data subset as especially interesting
- Linking: enhance brushed data in linked views consistently (F+C)

[Doleisch & Hauser, '02]
IVA: Degree of Interest (DOI)

- **doi(.)**: data items tr_i (table rows) \rightarrow degree of interest
 - $doi(tr_i) \in [0,1]$
 - $doi(tr_i) = 0 \Rightarrow tr_i$ not interesting ($tr_i \in \text{context}$)
 - $doi(tr_i) = 1 \Rightarrow tr_i$ 100% interesting ($tr_i \in \text{focus}$)

- **Specification**
 - explicit, e.g., through direct selection
 - implicit, e.g., through a range slider

- Fractional DOI values: $0 \leq doi(tr_i) \leq 1$
 - several levels (0, low, med., …)
 - a continuous measure of interest
 - a probabilistic definition of interest

(continuation on next slide)

IVA: Smooth Brushing \rightarrow Fractional DOI

- **Fractional DOI values** esp. useful wrt. scientific data: (quasi-)continuous nature of data \leftrightarrow smooth borders

- Goes well with gradual focus+context vis. techniques (coloring, semitransparency)

- **Specification**: smooth brushing [Doleisch & Hauser, 2002]
 - “inner” range: all 100% interesting (DOI values of 1)
 - between “inner” & “outer” range: fractional DOI values
 - outside “outer” range: not interesting (DOI values of 0)
Fuzzy Classification

DOI \([0,1]\), 0… not interesting, 1… 100% interesting

Requires fuzzy logic for combination, we use
\[
c = a \frac{1}{b} \frac{c}{c} = \min(a, b)
\]
\[
c = a \frac{b}{c} = \max(a, b)
\]
\[
c = \frac{a}{c} = 1
\]

Matches the smooth nature of the data

Goes well with F+C visualization, e.g.,
 opacity varies gradually with DOI

[Doleisch & Hauser 2002]
Three Patterns of SciData IVA

- Preliminary: domain x & range d visualized (≥ 2 views)

1. **Brushing on domain visualization**, e.g., brushing special locations in the map view
 - "x"
 - "... from x to d ...", local investigation

2. **Brushing on range visualization**, e.g., brushing outlier curves in a function graph view
 - "d"
 - "... from d to x ...", feature localization

3. Relating multiple range variates
 - "d"
 - "... within d ...", multi-variate analysis

IVA – Levels of Complexity

- A lot can be done with basic IVA, already! [pareto rule]
- We can consider a layered information space: from explicitly represented information (the data) to implicitly contained information, features, ...

show & brush

<table>
<thead>
<tr>
<th>temp.</th>
<th>vel.</th>
<th>...</th>
<th>data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>between the lines...</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>buried deeper...</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>features in application terms</td>
</tr>
</tbody>
</table>

??
A lot can be done with basic IVA, already! [pareto rule]

For more advanced exploration/analysis tasks, we extend it (in several steps):

- IVA, level 2: **logical combinations of brushes, e.g.,** utilizing the **feature definition language** [Doleisch et al., 2003]
- IVA, l. 3: **attribute derivation; advanced brushing,** with interactive formula editor; e.g., similarity brushing
- IVA, l4: **application-specific feature extraction, e.g.,** based on vortex extraction methods for flow analysis

Level 2: like **advanced verbal feature description**
- ex.: “hot flow, also slow, near boundary” (cooling j.)
- brushes comb. with **logical operators** (AND, OR, SUB)
- in a **tree,** or **iteratively** (((b_0 op_1 b_1) op_2 b_2) op_3 b_3) …
IVA – Levels of Complexity

- A lot can be done with basic IVA, already! [Pareto rule]
- For more advanced exploration/analysis tasks, we extend it (in several steps):
 - IVA, level 2: logical combinations of brushes, utilizing the feature definition language [Doleisch et al., 2003]
 - IVA, l. 3: attribute derivation; advanced brushing, with interactive formula editor; e.g., similarity brushing
 - IVA, l. 4: application-specific feature extraction, e.g., based on vortex extraction methods for flow analysis
- Level 3: using general info extraction mechanisms, two (partially complementary) approaches:
 1. derive additional attribute(s), then show & brush
 2. use an advanced brush to select “hidden” relations
IVA (level 3): Advanced Brushing

- **Std. brush**: brush 1:1 what you see
- **Adv. brush**: executes additional function (“intelligent”?)

Examples:
- angular brushing [Hauser et al., 2002]
- similarity brushing [Muigg et al., 2008]

3rd level IVA, adv. brushing example

- Considering a visualization of a family of function graphs:
 - select the steeply rising graphs

example prepared by Konyha, Zoltán
A simple line brush is not enough

Combining line brushes does not work, either

feature of interest: not explicitly available

3rd level IVA, adv. brushing example

The \textit{angular line brush} (a specialized brush) selects the intended function graphs

- that it intersects, and
- the angle is in a given threshold
IVA (level 3): Attribute Derivation

- **Principle** (in the context of iterative IVA):
 - see some data feature Φ of interest in a visualization
 - identify a mechanism T to describe Φ
 - execute (interactively!) an attribute derivation step to represent Φ explicitly (as new, synthetic attribute[s] d_Φ)
 - brush d_Φ to get Φ

- **Tools** T to describe Φ from:
 - numerical mathematics
 - statistics, data mining
 - etc.
 - scientific computing

- **IVA w/ T ↔ visual computing**

Attribute Derivation ↔ User Task / example

- The tools T, available in an IVA system, must reflect/match the **analytical steps of the user**:

- **Example:**
 - **first vis.**:
 - \leftrightarrow user wishes to select the “band” in the middle
 - so?
 - an advanced brush? a lasso maybe?
 - ah!
 - \rightarrow let’s normalize y and then brush (a)

- **leading to the wished selection:**
What user wishes to reflect?

- Many **generic wishes** – users interest in:
 - something **relative** (instead of some absolute values), example: show me the top-15%
 - change (instead of current values), ex.: show me regions with increasing temperature
 - some **non-local property**, ex.: show me regions with high average temperature
 - **statistical properties**, ex.: show me outliers
 - **ratios/differences**, ex.: show me population per area, difference from trend
 - etc.

- **Common characteristic** here:
 - **questions/tools generic**, not application-dependent!

How to reflect these user wishes?

- Many **generic wishes** – users interest in:
 - something **relative** (instead of some absolute values), example: show me the top-15%
 - change (instead of current values), ex.: show me regions with increasing temperature
 - some **non-local property**, ex.: show me regions with high average temperature
 - **statistical properties**, ex.: show me outliers
 - **ratios/differences**, ex.: show me population per area, difference from trend
 - etc.

- **Common characteristic** here:
 - **questions/tools generic**, not application-dependent!
Some useful tools for 3rd-level IVA

- From analysis, calculus, num. math:
 - **linear filtering** (convolve the data with some linear filter on demand, e.g., to smooth, for derivative estimation, etc.)
 - **calculus** (use an interactive formula editor for computing simple relations between data attributes; +, −, ∙, /, etc.)
 - **gradient estimation, numerical integration** (e.g., wrt. space and/or time)
 - **fitting/resampling** via interpolation/approximation

- From statistics, data mining:
 - **descriptive statistics** (compute the statistical moments, also robust, measures of outlyingness, detrending, etc.)
 - **embedding** (project into a lower-dim. space, e.g., with PCA for a subset of the attribs., etc.)

- **Important**: executed on demand, after prev. vis.

3rd-level IVA – Sample Iterations

- The Iterative Process of 3rd-level IVA:
 - Example 1:
 - you look at some temp. distribution over some region
 - you are interested in raising temperatures, but not temperature fluctuations
 - you use a temporal derivate estimator, for ex., central differences
 \(t_{\text{change}} = (t_{\text{future}} - t_{\text{past}}) / \text{len(future-past)} \)
 - you plot \(t_{\text{change}} \), e.g., in a histogram and brush whatever change you are interested in
 - maybe you see some frequency amplification due to derivation, so you go back and
 - use an appropriate smoothing filter to remove high frequencies from the temp. data, leading to a derived new \(t = t_{\text{smooth}} \) data attribute
 - selecting from a histogram of \(t_{\text{change}} \) (computed like above) is then less sensitive to temperature fluctuations
The Iterative Process of 3rd-level IVA:

- Example exploiting PCA:
 - you bring up a scatterplot of d_1 vs. d_2: (from an ECG dataset [Frank, Asuncion; 2010])
 - obviously, d_1 and d_2 are correlated, our interest: the data center wrt. the main trend
 - we ask for a (local) PCA of d_1 and d_2:
 - then we brush the data center
 - we get the wished selection
 - from here further steps are possible..., incl. study of other PCA-results, etc.

From analysis, calculus, num. math:
- linear filtering (convolve the data with some linear filter on demand, e.g., to smooth, for derivative estimation, etc).
- calculus (use an interactive formula editor for computing simple relations between data attributes; $+$, $-$, \cdot, \div, etc).
- gradient estimation, numerical integration (e.g., wrt. space and/or time).
- fitting / resampling via interpolation / approximation.

From statistics, data mining:
- descriptive statistics (compute the statistical moments, also robust, measures of outlyingness, detrending, etc).
- embedding (project into a lower-dim. space, e.g., with PCA for a subset of the attributes, etc).

Brushing of Attribute Clouds for the Visualization of Multivariate Data

Helke Jänicke, Michael Böttinger, and Gerik Scheuermann, Member, IEEE
A lot can be done with basic IVA, already! [Pareto rule]

For more advanced exploration/analysis tasks, we extend it (in several steps):

- IVA, level 2: **logical combinations of brushes** utilizing the **feature definition language** [Doleisch et al., 2003]
- IVA, l. 3: **attribute derivation**; advanced brushing with interactive formula editor; e.g., similarity brushing
- IVA, l4: **application-specific feature extraction** based on vortex extraction methods for flow analysis

Level 4: **application-specific procedures**
- tailored solutions (for a specific problem)
- “deep” information drill-down
- etc.
Interactive Visual Analysis – delivery

- Understanding data \textit{wrt. range d}
 - which distribution has data attribute d_i?
 - how do d_i and d_j relate to each other? (\textit{multivariate analysis})
 - which d_k discriminate data features?

- Understanding data \textit{wrt. domain x}
 - \textbf{where} are relevant features? (\textit{feature localization})
 - \textbf{which} values at specific x? (\textit{local analysis})
 - how are they related to parameters?

The Iterative Process of IVA...

...is a \textbf{very useful methodology} for data exploration & analysis

...is \textbf{very general} and can be (has already been) applied to \textbf{many different application fields} (in this talk the focus was on scientific data)

...\textbf{meets scientific computing} as a complementary methodology (with the \textbf{important difference} that in IVA the \textbf{user} with his/her perception/cognition is \textbf{in the loop} at different frequencies, also many fps)

...is \textbf{not yet fully implemented} (we’ve done something, e.g., in the context of \textit{SimVis, ComVis, etc.}) – from here: different possible paths, incl. \textit{InteractiveVisualMatlab, IVR, etc.)}
The **Dual Analysis Framework** for **High-dimensional Data IVA**

Çağatay Turkay, Helwig Hauser
University of Bergen
High- vs. multi-dimensional data

- multi-dimensional: >3D, 4D, 6D, 12D, ..., 24D(?)

- high-dimensional: ..., 40D, 80D, 240D, 1200D, ...
 - std. tools for multi-dim. data vis. don’t work
 - lots of statistics, etc., do not work properly, esp. when #dims. > #items

Where?

- Biology data (e.g., from genomics/proteomics), astronomy data (e.g., spectral imaging data), survey data (many questions), ...

Understanding \(n \)D for (really) large \(n \)

Curse of dimensionality is a problem, when \(n \) large

- \(n \)D distances become meaningless
- with that distances-based project methods
- statistics of wide tables don’t work

Hypothesis:

- there is valuable information in the «space of dimensions»
- the «space of dimensions» is structured, heterogeneous
- it’s worthwhile to understand this «space of dimensions» in order to do a better informed IVA of the data items

But how to understand this «space of dimensions»?

Can we visualize the dimensions of a dataset?
Almost all of visualization is about visualizing the (multi-dimensional) data items.

A new perspective: Dims. Visualization

Alternatively, and esp., when we have so many dims., we could visualize the data dimensions themselves!
Naïve Approach

Transposing the data table should do it, right? :-)

Not really...

Data Table

<table>
<thead>
<tr>
<th>Car</th>
<th>Cylinders</th>
<th>Displacem.[In^3]</th>
<th>Horsepower</th>
<th>Weight [lb]</th>
<th>Accel.[s@0-60 ModelYear]</th>
<th>Origin</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Car001</td>
<td>18</td>
<td>307</td>
<td>130</td>
<td>3504</td>
<td>12</td>
<td>70 US</td>
<td>chevrolet chevelle malibu</td>
</tr>
<tr>
<td>Car002</td>
<td>15</td>
<td>350</td>
<td>165</td>
<td>3693</td>
<td>11.5</td>
<td>70 US</td>
<td>buick skylark 320</td>
</tr>
<tr>
<td>Car003</td>
<td>18</td>
<td>318</td>
<td>150</td>
<td>3436</td>
<td>11</td>
<td>70 US</td>
<td>plymouth satellite</td>
</tr>
<tr>
<td>Car004</td>
<td>16</td>
<td>304</td>
<td>150</td>
<td>3433</td>
<td>12</td>
<td>70 US</td>
<td>amc rebel sst</td>
</tr>
<tr>
<td>Car005</td>
<td>17</td>
<td>302</td>
<td>140</td>
<td>3449</td>
<td>10.5</td>
<td>70 US</td>
<td>ford torino</td>
</tr>
<tr>
<td>Car006</td>
<td>15</td>
<td>429</td>
<td>198</td>
<td>4341</td>
<td>10</td>
<td>70 US</td>
<td>ford galaxie 500</td>
</tr>
<tr>
<td>Car007</td>
<td>14</td>
<td>454</td>
<td>220</td>
<td>4354</td>
<td>9</td>
<td>70 US</td>
<td>chevrolet impala</td>
</tr>
<tr>
<td>Car008</td>
<td>14</td>
<td>460</td>
<td>218</td>
<td>4312</td>
<td>8.5</td>
<td>70 US</td>
<td>plymouth fury iii</td>
</tr>
<tr>
<td>Car009</td>
<td>14</td>
<td>460</td>
<td>218</td>
<td>4312</td>
<td>8.5</td>
<td>70 US</td>
<td>pontiac catalina</td>
</tr>
<tr>
<td>Car010</td>
<td>15</td>
<td>500</td>
<td>150</td>
<td>4425</td>
<td>10</td>
<td>70 US</td>
<td>amc ambassador dpl</td>
</tr>
<tr>
<td>Car011</td>
<td>NA</td>
<td>383</td>
<td>175</td>
<td>4166</td>
<td>10.5</td>
<td>70 US</td>
<td>citroen ds-21 pallas</td>
</tr>
<tr>
<td>Car012</td>
<td>NA</td>
<td>383</td>
<td>170</td>
<td>3563</td>
<td>10</td>
<td>70 US</td>
<td>chevrolet chevelle concour</td>
</tr>
<tr>
<td>Car013</td>
<td>NA</td>
<td>383</td>
<td>170</td>
<td>3563</td>
<td>10</td>
<td>70 US</td>
<td>ford torino (sw)</td>
</tr>
<tr>
<td>Car014</td>
<td>NA</td>
<td>383</td>
<td>170</td>
<td>3563</td>
<td>10</td>
<td>70 US</td>
<td>plymouth satellite (sw)</td>
</tr>
<tr>
<td>Car015</td>
<td>NA</td>
<td>383</td>
<td>170</td>
<td>3563</td>
<td>10</td>
<td>70 US</td>
<td>amc rebel sst (sw)</td>
</tr>
<tr>
<td>Car016</td>
<td>15</td>
<td>430</td>
<td>160</td>
<td>3609</td>
<td>8</td>
<td>70 US</td>
<td>dodge challenger se</td>
</tr>
<tr>
<td>Car017</td>
<td>15</td>
<td>430</td>
<td>160</td>
<td>3609</td>
<td>8</td>
<td>70 US</td>
<td>plymouth 'cuda 340</td>
</tr>
<tr>
<td>Car018</td>
<td>NA</td>
<td>302</td>
<td>140</td>
<td>3353</td>
<td>8</td>
<td>70 US</td>
<td>ford mustang boss 302</td>
</tr>
<tr>
<td>Car019</td>
<td>15</td>
<td>400</td>
<td>150</td>
<td>3761</td>
<td>9.5</td>
<td>70 US</td>
<td>chevrolet monte carlo</td>
</tr>
<tr>
<td>Car020</td>
<td>14</td>
<td>455</td>
<td>225</td>
<td>3086</td>
<td>10</td>
<td>70 US</td>
<td>buick estate wagon (sw)</td>
</tr>
<tr>
<td>Car021</td>
<td>24</td>
<td>113</td>
<td>95</td>
<td>2372</td>
<td>15</td>
<td>70 Japan</td>
<td>toyota corona mark ii</td>
</tr>
</tbody>
</table>

just for illustration:

406 cars, 7 numeric dimensions
(not a high-dimensional dataset!)
Naïve Approach

Visualizing rows (cars) from this table is standard InfoVis:

Data transposition makes the dimensions to rows:

So what about visualizing this table?
Naïve Approach

Data transposition makes the dimensions to rows:

<table>
<thead>
<tr>
<th>Car001</th>
<th>Car002</th>
<th>Car003</th>
<th>Car004</th>
<th>Car005</th>
<th>Car006</th>
<th>Car007</th>
<th>Car008</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPG</td>
<td>18</td>
<td>15</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cylinders</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Displacem.[ln']</td>
<td>307</td>
<td>350</td>
<td>318</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horsepower</td>
<td>130</td>
<td>165</td>
<td>150</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight [lb]</td>
<td>3504</td>
<td>3693</td>
<td>3436</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acceler.[s][0-6]</td>
<td>12</td>
<td>11,5</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ModelYear</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>chevrolet chevrolet skylark plymouth sate amc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

So why doesn’t this work?

Naïve Approach

No comparable values in the columns after transposition!
Dual Analysis Framework

What do we do, when we visualize data items?
– per data item p_i, we map properties/attributes of p_i to vis.-cues, f.i., x and $y \rightarrow$
– we see, how the p_i relate to each other wrt. to their props.!

Translating this to visualizing dimensions:
– per data dimension d_j, we map properties/attributes of d_j to vis.-cues, f.i., x and $y \rightarrow$
– we see, how the d_j relate to each other wrt. to their props.!

Expressive properties of dimensions d_j (selection):
– descriptive statistics, like mean and std.-der.
– measures of outlyingness

So: constructing the properties table for dims. d_j:
– normalization first, then feature extraction

<table>
<thead>
<tr>
<th>#Outl</th>
<th>40</th>
<th>0</th>
<th>31</th>
<th>42</th>
<th>44</th>
<th>50</th>
<th>35</th>
</tr>
</thead>
<tbody>
<tr>
<td>#Outl_high</td>
<td>33</td>
<td>0</td>
<td>31</td>
<td>40</td>
<td>42</td>
<td>25</td>
<td>35</td>
</tr>
<tr>
<td>#Outl_low</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>25</td>
<td>25</td>
<td>35</td>
</tr>
<tr>
<td>high_outl_th</td>
<td>0.698</td>
<td>1.013</td>
<td>0.735</td>
<td>0.638</td>
<td>0.748</td>
<td>0.700</td>
<td>1.008</td>
</tr>
<tr>
<td>low_outl_th</td>
<td>0.076</td>
<td>-0.013</td>
<td>-0.078</td>
<td>0.007</td>
<td>0.029</td>
<td>0.200</td>
<td>0.072</td>
</tr>
<tr>
<td>IQR</td>
<td>0.309</td>
<td>0.800</td>
<td>0.510</td>
<td>0.298</td>
<td>0.396</td>
<td>0.210</td>
<td>0.500</td>
</tr>
<tr>
<td>q_3</td>
<td>0.532</td>
<td>1.000</td>
<td>0.605</td>
<td>0.457</td>
<td>0.570</td>
<td>0.548</td>
<td>0.750</td>
</tr>
<tr>
<td>Med.</td>
<td>0.372</td>
<td>0.200</td>
<td>0.214</td>
<td>0.266</td>
<td>0.343</td>
<td>0.446</td>
<td>0.500</td>
</tr>
<tr>
<td>q_1</td>
<td>0.223</td>
<td>0.200</td>
<td>0.095</td>
<td>0.159</td>
<td>0.174</td>
<td>0.338</td>
<td>0.250</td>
</tr>
<tr>
<td>Kurt.</td>
<td>-0.511</td>
<td>-1.411</td>
<td>-0.811</td>
<td>0.541</td>
<td>-0.821</td>
<td>0.373</td>
<td>-1.200</td>
</tr>
<tr>
<td>Skew.</td>
<td>0.457</td>
<td>0.506</td>
<td>0.694</td>
<td>1.034</td>
<td>0.506</td>
<td>0.230</td>
<td>0.021</td>
</tr>
<tr>
<td>Std.-Dev.</td>
<td>0.208</td>
<td>0.342</td>
<td>0.271</td>
<td>0.210</td>
<td>0.240</td>
<td>0.167</td>
<td>0.312</td>
</tr>
<tr>
<td>Avg.</td>
<td>0.39</td>
<td>0.50</td>
<td>0.33</td>
<td>0.32</td>
<td>0.39</td>
<td>0.45</td>
<td>0.54</td>
</tr>
<tr>
<td>Max.</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Min.</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Cylinders	0.24	1.00	0.62	0.46	0.54	0.24	0.00
Displ	0.16	1.00	0.73	0.65	0.59	0.21	0.00
Horsepower	0.24	1.00	0.65	0.57	0.52	0.18	0.00
Weight	0.19	1.00	0.61	0.57	0.52	0.24	0.00
Acceleration	0.21	1.00	0.60	0.51	0.52	0.15	0.00
ModelYear	0.16	1.00	0.93	0.83	0.77	0.12	0.00
Origin	0.13	1.00	1.00	0.95	0.78	0.06	0.00
Name	0.13	1.00	0.96	0.92	0.77	0.03	0.00

normalized data (1.)

properties table (2.)
Now we can visualize the dims. d_j

- mapping coherent and expressive properties to vis.-cues!

Table (2)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>#Out</td>
<td>40</td>
<td>0</td>
<td>31</td>
<td>42</td>
<td>44</td>
<td>50</td>
<td>53</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#Out_high</td>
<td>33</td>
<td>0</td>
<td>31</td>
<td>40</td>
<td>42</td>
<td>25</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#Out_low</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>25</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>high_out_th</td>
<td>0.698</td>
<td>1.013</td>
<td>0.735</td>
<td>0.638</td>
<td>0.746</td>
<td>0.700</td>
<td>1.008</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>low_out_th</td>
<td>0.54</td>
<td>0.5</td>
<td>0.342</td>
<td>0.8</td>
<td>1.034</td>
<td>35</td>
<td>42</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7 dims. in parallel coordinates (wrt. 8 selected properties)

Now the dual analysis can start!

- look up informative properties in the dims.-vis.
- do related items-visualization, accordingly

Example 1: exploring the most skewed dimension

1., selecting max(skew) in dims.-vis. (PC)

... it’s Horsepower!
Now the dual analysis can start!

- look up informative properties in the dims.-vis.
- do related items-visualization, accordingly

Example 2: comparing Gaussian & ranking-based stats.

1., seeing that both measures for the spread (std.-dev. vs. IQR) agree for all but one dim.

2., selecting it (not shown) reveals: it’s ModelYear, a discrete data dimension...
Now the dual analysis can start!
– look up informative properties in the dims.-vis.
– do related items-visualization, accordingly

Example 2: comparing Gaussian & ranking-based stats.

next:
comparing a low-spread (Accel.) vs. a high-spread dim. (Displacem.)

... the top-right dim. – max. spread – is Cylinders – basically categorical...
Quickly, we explore the dims. according to their props.
- hundreds or thousands of dims. → no problem! :-)
- dozens of properties → std. InfoVis is fine!

The Dual Analysis emerges through iteration:
- one key tool: the difference view

Working with the difference view

Higher values for the selection

Change in QQR values

Change in med values
Dual Analysis Framework

Difference View in action:

Dual Analysis Framework

More in the thesis / papers of Çağatay Turkay et al.

Integrating Computational Tools in Interactive and Visual Methods for Enhancing High-dimensional Data and Cluster Analysis

ÇAĞATAY TURKAY

Dissertation for the degree of Philosophiae Doctor (PhD)
Supervised by Helwig Hauser
Co-supervised by Peer Nebert
Institute for Informatics, University of Bergen

November 2014
Acknowledgements

You!

Luis Gustavo!

We’d like to hire ➢ 1 PostDoc