Interactive Visual Analysis of Rich Scientific Data

Helwig Hauser
University of Bergen

HH, ii.UiB.no/vis

HH: prof. in visualization (vis)
@ Dept. of Informatics (ii)
@ Univ. of Bergen (UiB)

UiB VisGroup

– 2007: group of 3:
– 2009: larger projects start
– 2011: EuroVis in Bergen

– 2013: new prof.:

[ranking from NFR's 10-year evaluation in 2011/2012]
Application-oriented basic research in visualization:

1. Researched visualization methodology (how to visualize)
 - Interactive Visual Analysis, \(n \)D data (H. Hauser et al.)
 - Visual Knowledge Discovery, 3D data (St. Bruckner et al.)
 - Illustrative Visualization (I. Viola et al.)

2. Applications at which this research is oriented (for whom)
 - Medical Visualization (partner in MedViz Bergen, etc.)
 - GeoSciences / Oil & Gas (e.g., financed by Statoil’s Akademiaavtale)
 - Biology / Bioinformatics (with CBU@ii et al.)
 - Fluid Dynamics (in collab. with FFI.no, for ex.)
 - Engineering (visual analysis of simulation data)

ii.UiB.no/vis PhDs (11 so far)

- Daniel Patel (Oct. 2009): Expressive Vis. & Rapid Interpr. of Seismic Volumes
- Jean-Paul Balabanian (Jan. 2010): Multi-Aspect Vis.: from Linked to Integrated Views
- Johannes Kehrer (May 2011): IVA of Multi-faceted Scientific Data
- Ove Daae Lampe (Nov. 2011): IVA of Process Data
- Armin Pobitzer (June 2012): IVA of Time-dependent Flows
- Paolo Angelelli (June 2012): Visual Expl. of Human Physiology
- Åsmund Birkeland (May 2013): Ultrasonic Vessel Vis.: From Extraction to Perception
- Endre Lidal (May 2013): Sketch-based Storytelling for Cognitive Problem Solving
- Çağatay Turkay (Nov. 2013): Interactive Visual Analysis of High-dimensional Data
- Mattia Natali (Sept. 2014): Sketch-based Mod. & Conceptual Vis. of Geomorphological Processes for ...
Interactive Visual Analysis

Helwig Hauser
University of Bergen

Interactive Visual Analysis (IVA)

- Given data – too much and/or too complex to be shown at once:

- IVA is an interactive visualization approach to facilitate
 - the exploration and/or the analysis of data (not necessarily the presentation of data), including
 - hypothesis generation & evaluation, sense making,
 - knowledge crystallization, etc.
 - according to the user’s interest/task, for ex., by interactive feature extraction,
 - navigating between overview and details, e.g., to enable interactive information drill-down [Shneiderman]

- through an iterative & interactive visual dialog
Interactive Visual Analysis ↔ Visual Analytics

- IVA ("interactive visual analysis") since 2000
- Tightly related to visual analytics, of course, e.g., integrating computational & interactive data analysis
- A particular methodology with specific components (CMV, linking & brushing, F+C vis., etc.)
- General enough to work in many application fields, but not primarily the VA fields (national security, etc.), in particular "scientific data" fields…

Integrating Interaction & Computation

- **Goal**: to combine the best of two worlds [Keim et al.]:
 - data exploration/analysis by the user, based on interactive visualization
 - and data analysis by the computer, based on statistics, machine learning, etc.
- **State of the art / levels of integration**:
 - mostly no integration, still
 - some vis. of results of computations
 - also: making comp. semi-interactive (here called "inner integration")
 - rare: tight integration
- **Outer integration** (here!):
 bundling interaction & computation in a loop
Target Data Model: “Scientific Data”

- **Characterized** by a combination of
 - **independent variables**, like *space* and/or *time* (cf. *domain*)
 - and **dependent variables**, like *pressure*, *temp.*, etc. (cf. *range*)

- So we can think of this type of data as **given as** \(d(x) \) with \(x \leftrightarrow \text{domain} \) and \(d \leftrightarrow \text{range} \) – examples:
 - CT data \(d(x) \) with \(x \in \mathbb{R}^3 \) and \(d \in \mathbb{R} \)
 - unsteady 2D flow \(v(x,t) \) with \(x \in \mathbb{R}^2 \), \(t \in \mathbb{R} \), and \(v \in \mathbb{R}^2 \)
 - num. sim. result \(d(x,t) \) with \(x \in \mathbb{R}^3 \), \(t \in \mathbb{R} \), and \(d \in \mathbb{R}^n \)
 - system sim. \(q(p) \) with \(p \in \mathbb{R}^n \) and \(q \in \mathbb{R}^m \)

- **Common property:**
 - \(d \) is (at least to a certain degree) **continuous** wrt. \(x \)

Interactive Visual Analysis of Scientific Data

- **Interactive visual analysis** (as exemplified in this tutorial) **works really well with scientific data**, e.g.,
 - results from **numerical simulation** (spatiotemporal)
 - imaging / **measurements** (in particular multivariate)
 - sampled **models**

- When used to study scientific data, **IVA employs**
 - methods from **scientific visualization** (vol. rend., …)
 - methods from **statistical graphics** (scatterplots, …), **information visualization** (parallel coords., *etc.*)
 - **computational tools** (statistics, machine learning, …)

- Applications include
 - **engineering**, **medicine**, **meteorology/climatology**, **biology**, *etc.*
The Iterative Process of IVA

Loop / bundling of two complementary parts:

- **visualization** – show to the user!
 Something new, or something due to interaction.
- **interaction** – tell the computer!
 What is interesting? What to show next?

Basic example (show – brush – show – …), cooling jacket context:

1. show a histogram of temperatures
2. brush high temperatures (>90°[±2°])
3. show focus+context vis. in 3D
4. locate relevant feature(s)

KISS-principle IVA:

- linking & brushing, focus+context visualization, …
Show & Brush

Tightest IVA loop
- **show data** (explicitly represented information)
- **one brush** (on one view, can work on >1 dims.)

Requires:
- **multiple views** (≥2)
- **interactive brushing** capabilities on views (brushes should be editable)
- **focus+context visualization**
- **linking between views**

Allows for different IVA patterns (wrt. domain & range)

A typical (start into an) IVA session of this kind:
- bring up multiple views
 - at least one for \(x, t\)
 - at least one for \(d_i\)
- I see (something)!
- brush this “something”
- linked F+C visualization
- first insight!

Show & Brush

Tightest IVA loop
- **show data** (explicitly represented information)
- **one brush** (on one view, can work on >1 dims.)

Requires:
- **multiple views** (≥2)
- **interactive brushing** capabilities on views (brushes should be editable)
- **focus+context visualization**
- **linking between views**

** Allows for different IVA patterns** (wrt. domain & range)
IVA: Multiple Views

- One dataset, but multiple views
- Scatterplots, histogram, 3D(4D) view, etc.

Interactive Brushing

- Move/alter/extend brush interactively
- Interactively explore/analyze multiple variates

[Doleisch et al., ’03]
Interactive Brushing

- Move/alter/extend brush interactively
- Interactively explore/analyze multiple variates

[Doleisch et al., '03]
IVA: Focus+Context Visualization

- Traditionally space distortion
 - more space for data of interest
 - rest as context for orientation

- Generalized F+C visualization
 - emphasize data in focus (color, opacity, …)
 - differentiated use of visualization resources

[Hauser... 2001, 2003]

F+C Visualization in IVA Views

- Colored vs. gray-scale visualization
- Opaque vs. semi-transparent visualization

In a scatterplot (left) or histogram (right): brushed data in red…

[Matković et al., '09]
F+C Visualization in IVA Views

Colored vs. gray-scale visualization
Opaque vs. semi-transparent visualization

In a scatterplot (left) or histogram (right): brushed data in red...

In parallel coordinates (above): brushed data in red & over ...

In 3D (above): less transp. & colored, in illustrative context ...

[Novotný & Hauser, '06]

[Muigg et al., '07]
IVA: Linked Views

- Brushing: mark data subset as especially interesting
- Linking: enhance brushed data in linked views consistently (F+C)

[Doleisch & Hauser, '02]
IVA: Degree of Interest (DOI)

- \(doi(\cdot)\): data items \(tr_i\) (table rows) \(\rightarrow\) degree of interest
 - \(doi(tr_i) \in [0,1]\)
 - \(doi(tr_i) = 0 \Rightarrow tr_i\) not interesting \((tr_i \in \text{context})\)
 - \(doi(tr_i) = 1 \Rightarrow tr_i\) 100% interesting \((tr_i \in \text{focus})\)

- Specification
 - explicit, e.g., through direct selection
 - implicit, e.g., through a range slider

- Fractional DOI values: \(0 \leq doi(tr_i) \leq 1\)
 - several levels (0, low, med., …)
 - a continuous measure of interest
 - a probabilistic definition of interest

(continues on next slide)

IVA: Smooth Brushing \(\rightarrow\) Fractional DOI

- Fractional DOI values esp. useful wrt. scientific data: (quasi-)continuous nature of data \(\leftrightarrow\) smooth borders

- Goes well with gradual focus+context vis. techniques (coloring, semitransparency)

- Specification: smooth brushing \cite{Doleisch & Hauser, 2002}
 - “inner” range: all 100% interesting (DOI values of 1)
 - between “inner” & “outer” range: fractional DOI values
 - outside “outer” range: not interesting (DOI values of 0)
Fuzzy Classification

DOI \([0,1]\) – 0 … not interesting
1 … 100% interesting

Requires fuzzy logic for combination,
we use \(c = \min(a, b)\)
\(c = \max(a, b)\)
\(c = 1\)

Matches the smooth nature of the data
Goes well with F+C visualization, e.g.,
opacity varies gradually with DOI

[Doleisch & Hauser 2002]
Three Patterns of SciData IVA

- Preliminary: domain x & range d visualized (≥2 views)

1. **Brushing on domain visualization**, e.g., brushing special locations in the map view
 - "x" local investigation
 - "... from x to d ...

2. **Brushing on range visualization**, e.g., brushing outlier curves in a function graph view
 - "d" feature localization
 - "... from d to x ...

3. Relating multiple range variates
 - "d" multi-variate analysis
 - "... within d ...

IVA – Levels of Complexity

- A lot can be done with basic IVA, already! [pareto rule]

- We can consider a **layered information space**: from explicitly represented information (the data) to implicitly contained information, features, ...

```
show & brush

temp.  vel.  ...  data

between the lines...

??

buried deeper...

features in application terms

... vort.
```
IVA – Levels of Complexity (2/4)

- A **lot** can be done with basic IVA, already! [pareto rule]
- For more advanced exploration/analysis **tasks**, we extend it (in several steps):
 - IVA, level 2: **logical combinations of brushes**, *e.g.*, utilizing the **feature definition language** [Doleisch et al., 2003]
 - IVA, l. 3: **attribute derivation**; **advanced brushing**, with interactive formula editor; *e.g.*, similarity brushing
 - IVA, l4: **application-specific feature extraction**, *e.g.*, based on vortex extraction methods for flow analysis

- **Level 2**: like **advanced verbal feature description**
 - ex.: “**hot** flow, also **slow**, near **boundary**” (cooling j.)
 - brushes comb. with **logical operators** (AND, OR, SUB)
 - in a **tree**, or **iteratively** (((b₀ op₁ b₁) op₂ b₂) op₃ b₃) …

IVA – Levels of Complexity (2/4)

- A **lot** can be done with basic IVA, already! [pareto rule]
- For more advanced exploration/analysis **tasks**, we extend it (in several steps):
 - IVA, level 2: **logical combinations of brushes**, *e.g.*, utilizing the **feature definition language** [Doleisch et al., 2003]
 - IVA, l. 3: **attribute derivation**; **advanced brushing**, with interactive formula editor; *e.g.*, similarity brushing
 - IVA, l4: **application-specific feature extraction**, *e.g.*, based on vortex extraction methods for flow analysis

- **Level 2**: like **advanced verbal feature description**
 - ex.: “**hot** flow, also **slow**, near **boundary**” (cooling j.)
 - brushes comb. with **logical operators** (AND, OR, SUB)
 - in a **tree**, or **iteratively** (((b₀ op₁ b₁) op₂ b₂) op₃ b₃) …
IVA – Levels of Complexity

- **A lot** can be done with basic IVA, already! [Pareto rule]
- **For more advanced** exploration/analysis **tasks**, we extend it (in several steps):
 - IVA, level 2: **logical combinations of brushes** utilizing the **feature definition language** [Doleisch et al., 2003]
 - IVA, l. 3: **attribute derivation**; **advanced brushing**, with interactive formula editor; e.g., similarity brushing
 - IVA, l4: **application-specific feature extraction**, e.g., based on vortex extraction methods for flow analysis

- Level 3: using **general info extraction** mechanisms, two (partially complementary) approaches:
 1. **derive additional attribute**(s), then show & brush
 2. use an **advanced brush** to select “hidden” relations
IVA (level 3): Advanced Brushing

- **Std. brush**: brush 1:1 what you see
- **Adv. brush**: executes additional function ("intelligent")?

Examples:
- angular brushing [Hauser et al., 2002]
- similarity brushing [Muigg et al., 2008]
- percentile brush [new]

3rd level IVA, adv. brushing example

- Considering a visualization of a family of function graphs:
 - select the steeply rising graphs

Example prepared by Konyha, Zoltan
3rd level IVA, adv. brushing example

- A simple line brush is not enough

- Combining line brushes does not work, either

feature of interest: not explicitly available
The *angular line brush* (a specialized brush) selects the intended function graphs that it intersects, and the angle is in a given threshold.

3rd level IVA, adv. brushing example

example prepared by Konyha, Zoltan
IVA (level 3): Attribute Derivation

- **Principle** (in the context of iterative IVA):
 - see some data feature Φ of interest in a visualization
 - identify a mechanism T to describe Φ
 - execute (interactively!) an attribute derivation step to represent Φ explicitly (as new, synthetic attribute[s] d_φ)
 - brush d_φ to get Φ

- **Tools** T to describe Φ from:
 - numerical mathematics
 - statistics, data mining
 - etc.
 - ➢ scientific computing

- **IVA w/ T ↔ visual computing**

Attribute Derivation ↔ User Task / example

- The tools T, available in an IVA system, must reflect/match the **analytical steps of the user**:

- **Example**:
 - first vis.: \leftrightarrow user wishes to select the “band” in the middle
 - so? an advanced brush? a lasso maybe?
 - ah! let’s normalize y and then brush (a)

- leading to the wished selection:
What user wishes to reflect?

- Many **generic wishes** – users interest in:
 - something **relative** (instead of some absolute values),
 example: show me the top-15%
 - **change** (instead of current values),
 ex.: show me regions with increasing temperature
 - some **non-local property**,
 ex.: show me regions with high average temperature
 - **statistical properties**,
 ex.: show me outliers
 - **ratios/differences**,
 ex.: show me population per area, difference from trend
 - **etc.**

- **Common characteristic** here:
 - **questions/tools generic**, not application-dependent!

How to reflect these user wishes?

- Many **generic wishes** – users interest in:
 - something **relative** (instead of some absolute values),
 example: show me the top-15%
 ⇒ **use**, e.g., **normalization**
 - **change** (instead of current values),
 ex.: show me regions with increasing temperature
 ⇒ **derivative estimation**
 - some **non-local property**,
 ex.: show me regions with high average temperature
 ⇒ **numerical integration**
 - **statistical properties**,
 ex.: show me outliers
 ⇒ **descriptive statistics**
 - **ratios/differences**,
 ex.: show me population per area, difference from trend
 ⇒ **calculus**
 - **etc.**
 ⇒ **data mining**
 (fast enough?)

- **Common characteristic** here:
 - **questions/tools generic**, not application-dependent!
Some useful tools for 3rd-level IVA

- **From analysis, calculus, num. math:**
 - **linear filtering** (convolve the data with some linear filter on demand, e.g., to smooth, for derivative estimation, etc.)
 - **calculus** (use an interactive formula editor for computing simple relations between data attributes; +, −, ·, /, etc.)
 - **gradient estimation, numerical integration** (e.g., wrt. space and/or time)
 - **fitting/resampling** via interpolation/approximation

- **From statistics, data mining:**
 - **descriptive statistics** (compute the statistical moments, also robust, measures of outlyingness, detrending, etc.)
 - **embedding** (project into a lower-dim. space, e.g., with PCA for a subset of the attribs., etc.)

Important: executed on demand, after prev. vis.

3rd-level IVA – Sample Iterations

- **The Iterative Process of 3rd-level IVA:**
 - **Example 1:**
 - you look at some temp. distribution over some region
 - you are interested in raising temperatures, **but not temperature fluctuations**
 - you use a **temporal derivate estimator**, for ex., central differences $t_{\text{change}} = (t_{\text{future}} - t_{\text{past}}) / \text{len(future−past)}$
 - you plot t_{change}, e.g., in a **histogram** and **brush** whatever change you are interested in
 - maybe you see some frequency amplification due to derivation, **so you go back** and
 - use an **appropriate smoothing filter** to remove high frequencies from the temp. data, leading to a derived new $t = t_{\text{smooth}}$ data attribute
 - selecting from a **histogram** of t_{change} (computed like above) is then less sensitive to temperature fluctuations
A lot can be done with basic IVA, already! [Pareto rule]

For more advanced exploration/analysis tasks, we extend it (in several steps):

1. **IVA, level 2:** logical combinations of brushes, utilizing the feature definition language [Doleisch et al., 2003]

2. **IVA, l. 3:** attribute derivation; advanced brushing, with interactive formula editor; e.g., similarity brushing

3. **IVA, l4:** application-specific feature extraction, e.g., based on vortex extraction methods for flow analysis

Level 4: application-specific procedures
- tailored solutions (for a specific problem)
- “deep” information drill-down
- etc.
Interactive Visual Analysis – delivery

- Understanding data **wrt. range** \(d \)
 - which distribution has data attribute \(d_i \)?
 - how do \(d_i \) and \(d_j \) relate to each other? (**multivariate analysis**)
 - which \(d_k \) discriminate data features?

- Understanding data **wrt. domain** \(x \)
 - **where** are relevant features? (**feature localization**)
 - **which** values at specific \(x \)? (**local analysis**)
 - how are they related to parameters?

The Iterative Process of IVA...

...is a **very useful methodology**
 for data exploration & analysis

...is **very general** and can be (has already been) applied to **many different application fields**
 (in this talk the focus was on scientific data)

...meets **scientific computing** as a complementary methodology (**with the important difference** that in IVA
 the user with his/her perception/cognition is in the loop
 at **different frequencies**, also many fps)

...is **not yet fully implemented** (**we’ve done something,**
 e.g., in the context of **SimVis, ComVis, etc.**) – from here: **different possible paths**, incl. **InteractiveVisualMatlab, IVR, etc.**
Acknowledgements

You!

Alexander Lundervold and HIB!

Collaborators:
H. Doleisch, R. Fuchs/Bürger,
J. Kehrer, Ç. Turkay, Z. Konyha,
Kr. Matković, P. Filzmoser,
et al.

Funding agencies!