The Iterative Process of Interactive Visual Analysis

Helwig Hauser (Univ. of Bergen)

Thanks & context

- **Thanks** for the invitation to talk at EuroVA 2012! :-)
- **“Order”**: to comment on VA ↔ SciVis, …
- **Context:**
 - ≈12 years of res. on interactive visual analysis, mostly at VRVis and at the Univ. of Bergen
 - PhD projects by Helmut Doleisch (~2004), Raphael Fuchs (~2008), Johannes Kehrer (~2011), Çağatay Turkay (2010~), and several others
 - res. cooperation with SimVis (H. Doleisch, *et al*.), VRVis (Krešimir Matković, Harald Piringer, *et al*.), Univ. of Magdeburg (Steffen Oeltze *et al*.), *etc*.
 - related projects, including VisMaster, SemSeg, *etc*.
 - funding from FFG (Austria), EC, UiB, *etc*.
Interactive Visual Analysis

- Given data – too much and/or complex to be shown at once,
- an interactive visualization methodology to facilitate
 - the exploration and analysis of data (not necessarily the presentation of data), including
 - hypothesis generation & evaluation, sense making, knowledge crystallization, etc.
 - focusing according to the user’s interest, e.g., by interactive feature extraction,
 - navigating between overview and details, e.g., to enable interactive information drill-down [Shneiderman]
- through an iterative & interactive visual dialog reminds you of visual analytics?

Visual Analytics ↔ Interactive Visual Analysis

- IVA (interactive visual analysis) since 2000
- Tightly related to visual analytics, of course, e.g., integrating computational & interactive data analysis
- Particular methodology with specific components (CMV, linking & brushing, F+C vis., etc.)
- General enough to work in many application fields, but not primarily the VA fields (national security, etc.), in particular “SciVis fields”…

- Really a question of difference?? :-(
Integrating Interaction & Computation

Goal: to combine the best of two worlds [Keim et al.]:
- data exploration/analysis by the user, based on interactive visualization
- and data analysis by the computer, based on statistics, machine learning, etc.

State of the art / levels of integration:
- mostly no integration, still
- some vis. of results of computations
- also: making comp. semi-interactive (here called “inner integration”)
- rare: tight integration

Outer integration (here!):
bundling interaction & computation in a loop
Target Model of “Scientific Data”

- Characterized by a combination of
 - independent variables, like space and/or time (aka. domain)
 - and dependent variables, like pressure, temp., etc. (aka. range)

- So we can think of this type of data as given as \(d(x) \) with \(x \) \& domain and \(d \) \& range – examples:
 - CT data \(d(x) \) with \(x \in \mathbb{R}^3 \) and \(d \in \mathbb{R} \)
 - time-dep. 2D flow \(v(x,t) \) with \(x \in \mathbb{R}^2 \), \(t \in \mathbb{R} \), and \(v \in \mathbb{R}^2 \)
 - num. sim. result \(d(x,t) \) with \(x \in \mathbb{R}^3 \), \(t \in \mathbb{R} \), and \(d \in \mathbb{R}^n \)
 - system sim. \(q(p) \) with \(p \in \mathbb{R}^n \) and \(q \in \mathbb{R}^m \)

- Common property:
 - \(d \) is (at least to a certain degree) continuous wrt. \(x \)

Interactive Visual Analysis of Scientific Data

- Interactive visual analysis (as exemplified in this talk) works really well with scientific data, e.g.,
 - results from numerical simulation (spatiotemporal)
 - imaging / measurements (in particular multivariate)
 - sampled models

- When used to study scientific data, IVA employs
 - methods from scientific visualization (vol. rend., …)
 - methods from statistical graphics (scatterplots, …), information visualization (parallel coords., etc.)
 - computational tools (statistics, machine learning, …)

- Applications include
 - engineering, medicine, meteorology/climatology, biology, etc.
The Iterative Process of IVA

- Loop / bundling of two complementary parts:
 - **visualization** – show to the user!
 Something new, or something due to interaction.
 - **interaction** – tell the computer!
 What is interesting? What to show next?

- Basic example (*show – brush – show – …*), cooling jacket context:
 1. show a histogram of temperatures
 2. brush high temperatures (>90°[±2°])
 3. show focus+context vis. in 3D
 4. locate relevant feature(s)

- KISS-principle IVA:
 - linking & brushing, focus+context visualization, …

IVA – Levels of Complexity (1/4)

- A lot can be done with KISS-principle IVA! [pareto rule]

- We can consider a layered information space:
 from explicitly represented information (the data)
 to implicitly contained information, features, …
IVA – Levels of Complexity (2/4)

- A lot can be done with KISS-principle IVA! [pareto rule]
- **For more advanced** exploration/analysis tasks, we extend it (in several steps):
 - IVA, level 2: **logical combinations of brushes**, e.g., utilizing the **feature definition language** [Doleisch et al., 2003]
 - IVA, l. 3: **attribute derivation; advanced brushing**, with interactive formula editor; e.g., similarity brushing
 - IVA, l4: **application-specific feature extraction**, e.g., based on vortex extraction methods for flow analysis

- **Level 2**: like **advanced verbal feature description**
 - ex.: "hot flow, also slow, near boundary" (cooling j.)
 - brushes comb. with **logical operators** (AND, OR, SUB)
 - in a **tree**, or **iteratively** ((((b0 op1 b1) op2 b2) op3 b3) ...)

IVA – Levels of Complexity (2/4)

- A lot can be done with KISS-principle IVA! [pareto rule]
- **For more advanced** exploration/analysis tasks, we extend it (in several steps):
 - IVA, level 2: **logical**
 - utilizing the **feature definition language**
 - IVA, l. 3: **attribute derivation; advanced brushing**, with interactive formula editor
 - IVA, l4: **application-specific feature extraction**, e.g., based on vortex extraction methods for flow analysis

- **Level 2**: like **advanced verbal feature description**
 - ex.: "hot flow, also slow, near boundary" (cooling j.)
 - brushes comb. with **logical operators** (AND, OR, SUB)
 - in a **tree**, or **iteratively** ((((b0 op1 b1) op2 b2) op3 b3) ...)

multiple views & sets.
IVA (level 2) Synopsis

- Multiple views, multiple brushes, brush combinations via logical ops. (feature definition language [Doleisch et al., 2003])

- Example...

IVA (level 2) Example

- [Image of example]
IVA – Levels of Complexity (3/4)

- A lot can be done with KISS-principle IVA!

For more advanced exploration/analysis tasks, we extend it (in several steps):

- IVA, level 2: logical combinations of brushes utilizing the feature definition language [Doleisch et al., 2003]

- IVA, l. 3: attribute derivation; advanced brushing with interactive formula editor; e.g., similarity brushing

- IVA, l4: application-specific feature extraction, e.g., based on vortex extraction methods for flow analysis

Level 3: using general info extraction mechanisms, two (partially complementary) approaches:

1. derive additional attribute(s), then show & brush
2. use an advanced brush to select “hidden” relations
IVA (level 3): Advanced Brushing

- **Std. brush**: brush 1:1 what you see
- **Adv. brush**: executes additional function ("intelligent")

Examples:
- angular brushing [Hauser et al., 2002]
- similarity brushing [Muigg et al., 2008]
- percentile brush [new]
IVA (level 3): Attribute Derivation

- **Principle** (in the context of iterative IVA):
 - see some data feature Φ of interest in a visualization
 - identify a mechanism T to describe Φ
 - execute (interactively!) an attribute derivation step to represent Φ explicitly (as new, synthetic attribute[s] d_ϕ)
 - brush d_ϕ to get Φ

- **Tools** T to describe Φ from:
 - numerical mathematics
 - statistics, data mining
 - etc.
 - ➢ scientific computing
- **IVA w/ T ↔ visual computing**

Attribute Derivation ↔ User Task / example

- The tools T, available in an IVA system, must reflect/match the analytical steps of the user:

- **Example**:
 - first vis.: \leftrightarrow user wishes to select the “band” in the middle
 - so? :-) an advanced brush? a lasso maybe?
 - ah! \rightarrow let’s normalize y and then brush (a)

- leading to the wished selection:
What user wishes to reflect?

- Many **generic wishes** – users interest in:
 - something **relative** (instead of some absolute values),
 example: show me the top-15%
 - **change** (instead of current values),
 ex.: show me regions with increasing temperature
 - some **non-local property**,
 ex.: show me regions with high average temperature
 - **statistical properties**,
 ex.: show me outliers
 - **ratios/differences**,
 ex.: show me regions with increasing temperature
 - **etc.**

- **Common characteristic** here:
 - **questions/tools generic**, not application-dependent!

How to reflect these user wishes?

- Many **generic wishes** – users interest in:
 - something **relative** (instead of some absolute values),
 example: show me the top-15% → **use**, e.g., **normalization**
 - **change** (instead of current values)
 ex.: show me regions with increasing temperature
 - some **non-local property**,
 ex.: show me regions with high average temperature
 - **statistical properties**,
 ex.: show me outliers
 - **ratios/differences**,
 ex.: show me population per area, difference from trend
 - **etc.**

- **Common characteristic** here:
 - **questions/tools generic**, not application-dependent!

 ⇒ **calculus**
 ⇒ **data mining** (fast enough?)

 ⇒ **derivative estimation**

 ⇒ **numerical integration**

 ⇒ **descriptive statistics**

 ⇒ **calculus**

 ⇒ **data mining** (fast enough?)
Some useful tools for 3rd-level IVA

- From **analysis, calculus, num. math**:
 - **linear filtering** (convolve the data with some linear filter on demand, e.g., to smooth, for derivative estimation, etc.)
 - **calculus** (use an interactive formula editor for computing simple relations between data attributes; +, −, ·, ⁄, etc.)
 - **gradient estimation, numerical integration** (e.g., wrt. space and/or time)
 - **fitting/resampling via interpolation/approximation**

- From **statistics, data mining**:
 - **descriptive statistics** (compute the statistical moments, also robust, measures of outlyingness, detrending, etc.)
 - **embedding** (project into a lower-dim. space, e.g., with PCA for a subset of the attrs., etc.)

- **Important**: executed on demand, after prev. vis.
The Iterative Process of 3rd-level IVA:

Example 1:
- you look at some temp. distribution over some region
- you are interested raising temperatures, but not temperature fluctuations
- you use a temporal derivate estimator, for ex., central differences $t_{\text{change}} = (t_{\text{future}} - t_{\text{past}}) / \text{len}(\text{future} - \text{past})$
- you plot t_{change}, e.g., in a histogram and brush what ever change you are interested in
- maybe you see that some frequency amplification due to derivation, so you go back and
- use an appropriate smoothing filter to remove high frequencies from the temp. data, leading to a derived, new $t = t_{\text{smooth}}$ data attribute
- selecting from a histogram of t_{change} (computed like above) is then less sensitive to temperature fluctuations

Example 2:
- you bring up a scatterplot of d_1 vs. d_2: (from an ECG dataset [Frank, Asuncion, 2010])
- obviously, d_1 and d_2 are correlated, our interest: the data center wrt. the main trend
- we ask for a (local) PCA of d_1 and d_2
- then we brush the data center
- we get the wished selection
- from here further steps are possible..., incl. study of other PCA-results, etc.
Visualizing / analyzing lots of statistics

Useful statistical measures include:
- moments (μ, σ, ...), robust versions (median, IQR, ...)
- quartiles, octiles, and quartiles $q(p)$

Useful views allow the interactive visual analysis
- quantile-plot $q(p)$ vs. p, here for numerous x
- detrending (e.g., $-q_2$), normalization (e.g., z)

Important: executed on demand, after prev. vis.
IVA – Levels of Complexity

A lot can be done with KISS-principle IVA! [pareto rule]

For more advanced exploration/analysis tasks, we extend it (in several steps):

- IVA, level 2: logical combinations of brushes and utilizing the feature definition language [Doleisch et al., 2003]
- IVA, level 3: attribute derivation; advanced brushing, e.g., similarity brushing
- IVA, level 4: application-specific feature extraction, e.g., based on vortex extraction methods for flow analysis

Level 4: application-specific procedures
- tailored solutions (for a specific problem)
- “deep” information drill-down
- etc.
Interactive Visual Analysis – delivery

- Understanding data wrt. range d
 - which distribution has data attribute \(d_i \)?
 - how do \(d_i \) and \(d_j \) relate to each other? (multivariate analysis)
 - which \(d_k \) discriminate data features?

- Understanding data wrt. domain x
 - where are relevant features? (feature localization)
 - which values at specific x? (local analysis)
 - how do they relate to parameters?

Three Patterns of SciData IVA

- Preliminary: domain x & range d visualized (≥2 views)
 - brushing on domain visualization, e.g., brushing special locations in the map view
 1. local investigation
 - brushing on range visualization, e.g., brushing outlier curves in a function graph view
 2. feature localization
 - relating multiple range variates
 3. multi-variate analysis
The Iterative Process of IVA…

leads to an interactive & iterative workbench for visual data exploration & analysis (compare to visual computing, again)

- Different levels of complexity (show & brush, logical combinations, advanced brushing & attribute derivation, etc.)

…lead to according iteration frequencies:
- on level 1: smooth interactions, many fps, for example during linking & brushing
- on level 2: interleaved fast steps of brush ops., for example when choosing a logical op. to cont. with
- on level 3: occasionally looking at a progress bar, for example when computing some PCA, etc.

These frequencies limit the spectrum of usable tools
- New res. work will help to extend this spectrum!

The Iterative Process of IVA…

...is a very useful methodology for data exploration & analysis

...is very general and can be (has already been) applied to many different application fields (in this talk the focus was on scientific data)

...meets scientific computing as a complementary methodology (with the important difference that in IVA the user with his/her perception/cognition is in the loop at different frequencies, also many fps)

...is not yet fully implemented (we've done something, e.g., in the context of SimVis, ComVis, etc.) – from here: different possible paths, incl. InteractiveVisualMatlab, IVR, etc.)
Acknowledgements

You!

Krešimir Matković & Giuseppe Santucci!

Helmut Doleisch, Raphael Fuchs, Johannes Kehrer, Çağatay Turkay, et al.!

All around SimVis and ComVis and …

Funding partners (FFG, AVL, EU, UiB, …)

Vis/IVA PhD in Bergen?
Apply until 10.6. or 10.8.!

... see www.ii.UiB.no/vis!!