Interactive Story Telling
for
Presentation with Visualization

Helwig Hauser
University of Bergen, Norway
www.ii.UiB.no/vis
Visualization – what for?

- **General definition:**
 Visualization = utilizing computer graphics technology to enable insight into data

- **Task categories:**
 - visualization for exploration / analysis
 - exploration: detecting the unexpected
 - analysis: confirming/rejecting hypotheses
 - interactive visual information drill-down
 - visualization as expert tool
 - visualization for presentation
 - presentation: communication of findings to others
 - ranging between static and interactive graphics
 - includes visualization for "the masses"
 - special requirements wrt. comprehensibility, credibility

Some State of the Art

- **How to present?**
 (esp. wrt. interactive visualization)
 - images (with labels!)
 - animations
 - semi-interactive graphics
 - interactive graphics

- [VRVis (Mroz…)]
- [Hamburg (Höhne…)]
- [Magdeburg (Preim…)]
The Basic Idea (EuroVis 2007)

- Improve comprehensibility
 - challenge/problem: loaded vis. results difficult to (fully) understand
 - approach/solution: preserve the creation of a visualization result (not only the final picture)

- Improve credibility
 - challenge/problem: „sink or swim“ visualization („believe it or …“)
 - approach/solution: enable the interactive reinvestigation on demand (diminish disbelief)

Sample Story

- Analysis of a tripod fracture…
Overview

- Visualization stories
- Story telling and interaction
- Sample story
- Story authoring, implementation
Story Model

- From **story node** to **story node** (cf. keyframe anim.),
 - usually the story stops here for a moment
 - usually nodes are annotated
- via **story transitions**, which are composed of **action groups**, that join **actions** together which should be done in parallel

Sample Story Templates

- Information drill-down (à la Shneiderman et al.)
 - overview first
 - zoom & filter
 - details on demand
- Comparative visualization
 - e.g., left side vs. right side (symmetric datasets)
 - e.g., pre-operative vs. post-operative (multiple datasets)
- Iterative investigation
 - feature set traversal (FORALL features DO visualization)
 - cf. lymph nodes visualization [Krüger et al., EuroVis ’05]
Three Layers of Interaction in Visualization

1. viewing/lighting
2. representation ("how")
3. content ("what")

Story Layout

portrait. landscape

story nodes
Passive Story Consumption

- default configuration, no interaction
- the story is consumed **like an animation**

Story Telling and Interaction

- how far do we go off the story during interaction?
Story Playback with Interactive Approval

- **at a certain point...** (here: story node #2)
- **... the user decides to pause the story...**
- **... and to interactively approve the current visualization setting (here: varying opacity, f.i.)**
- **then the user (automatically) returns to the story and continues story playback**

Semi-Interactive Story Playback

- **at a certain point...** (here: after story node #2)
- **... the user decides to leave the story...**
- **... and to interactively steer certain visualization parameters him-/herself, instead of letting the story set them (here: taking another viewport, f.i.)**
- **at another point...** (here: after story node #3)
- **then the user (automatically) returns to the story and continues story playback**
Total Separation from the Story

- at a certain point… (here: after story node #3)
- ... the user decides to leave the story...
- ... and to change to interactive visualization (no return to the story)

All Four Interaction Patterns

- passive story playback
- st. telling with interactive approval
- semi-interactive story playback
- total separation from story
Story Authoring

- Story generation, then story editing

Implementation

- Based on RTVR (Java)
Story Telling for Presentation

- New approach to improve
 - comprehensibility
 - credibility
- Presentation relevant (often costly)
- Semi-interactive visualization
 - guided interaction (if interaction at all)
 - adapts to user preferences
- Future opportunities
 - automatic export of reports
 - delayed / remote cooperation (joint analysis)
 - documentation

Acknowledgements

- Michael Wohlfart (did his Master on all this)
- Lukas Mroz – RTVR, support, much more! ;-)
- The Meister!
- Ivan Viola, Stefan Bruckner – very valuable input!
- Bernhard Preim, Knut Hartmann – great exchange!
- You! for your attention!

- Kplus.at for funding – very important! ;-)