Interactive Visualization as a Visual Dialog for Data Investigation

Helwig Hauser, University of Bergen 2010-04-13
Visualization?

- Many different conceptions around...
- Here: **Data Visualization**
 - data from
 - measurements, e.g., medical imaging
 - computational simulation, e.g., industrial simulation
 - scientific modeling, e.g., dynamical systems
 - visualization for
 - exploration – detecting the unknown
 - analysis – confirming/rejecting hypotheses
 - presentation – dissemination
- Examples:
 - visualization for disseminating climate scenarios
 - medical visualization for intervention planning

Visualization History in Short

- The int’l scientific field of visualization: ~20ys. old
- Lot’s of progress:
 - volume rendering
 - flow visualization
 - information visualization
 - etc.
- Milestones
 - IEEE VisWeek
 - EuroVis (2011: Bergen!)
 - etc.
- New challenges, e.g., visual analytics
So how’s visualization doing then?

- **Very well!**
 - it’s a *booming research field*
 (more researchers, more publications, more funding, …)
 - it’s paralleling the *increasingly visual world*
 (“everything” is getting graphical these days)
 - it’s also *selling*
 (SpotFire, Tableau, MeVisLab, Amira, vtk, …)

- **Limitations:**
 - usually costly (esp. in terms of time, etc.)
 - often for experts only – and there aren’t too many!
 - often somehow a “dead end street” – “just” showing the data
A Challenge in Visualization

- A picture says more than a thousand words – great!
- Seeing is understanding – great!
- ...
- Not enough?
 - implicit information (not immediately visible in the data)
 - quantitative results needed (visualization often qualitative)

Goal: making visualization a tool
- iterative & computational
- embedded in work flow

A Layered Information Space

- Metaphor of a (deep) sea of information
- Explicitly represented information (the data) on top, implicitly represented information below (in layers)

user, task

data
relational information
complex information
features

example:
some flow data

temp. vel. ...
Interactive Visual Information Drill-Down at levels of varying complexity:
- show & brush
- relational analysis
 - feature definition in DNF (disjunctive normal form)
- complex analysis
 - attribute derivation (**today’s focus**)
 - attribute transformations, e.g., normalization
 - derivatives, differences
 - local statistics
 - ...
 - advanced brushing
- feature-based (appl.-dependent) analysis
Analysis of Fronts

- color = normalized temp.

- color = vertical wind direction
Analysis of a Climate Simulation Dataset

- Data: aggregated from large-scale climate simulation (simulation of CLIMBER model, by PIK.de)
 - >30 time series, e.g., Greenland temperature, ...
 - over 500 years each
 - for 10×10 simulation runs

- Challenges:
 - data characteristics (nature of the data/simulation)
 - mix of frequencies along time series
 - discrete values series
 - advanced analysis questions
 - which series remain stable over time?
 - outliers?

Northern hemi-sphere ice area, mix of different periods
Sample Analysis of Sea Ice Changes

Starting from the multi-frequency times series

Q: any large-scale changes?

1. smoothing of curves
2. 1st order derivation
3. smoothing of derivatives
Sample Analysis N-Atlantic Fresh Water

Starting from the discrete value series

Q: any atypical curves?

1. smoothing of curves
2. another smoothing iteration
3. 1st order derivation
Making Visualization Quantitative

Measuring in visualization
- what can we see? (⇒ perceptual psychology)
- important: show scales, legends, values!
- interpolation or discretization?
A Large Space of Color Maps

- Continuous vs. discrete maps
- Diverging vs. sequential maps
- Continuous vs. paired maps

Making Visualization Quantitative

- Measuring in visualization
 - what can we see? (⇒ perceptual psychology)
 - important: show scales, legends, value
 - interpolation or discretization?
 - transformation into quantitative scales
 plus value-accurate interaction
Conclusions

- **Visualization** has come a decades **long** and **very positive** way!
 - great technology available, e.g., in VolViz or FlowVis
 - visualization for the masses, e.g., Gapminder, etc.

- **Interesting visualization challenges:**
 - making visualization a visual dialog between the user and the data
 - interactive
 - iterative
 - computational
 - embedding visualization within the work flow
 - making visualization quantitative
 - export from visualization

Acknowledgements

- **You!**

- Many colleagues, incl.
 - **Helmut Doleisch** and many who helped to develop **Interactive Visual Analysis**, e.g., **Johannes Kehrer**
 - **Krešimir Matković** and colleagues from VRVis
 - **Bernhard Preim** & his team in Magdeburg
 - **Chris Johnson** and other VIPs

- All the different funding agencies
 - European Commission
 - FFG
 - ...